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ABSTRACT

A free field method for measuring the specific normal impedance

and absorption coefficient of a material at oblique incidence has

been investigated. The surface pressure method, developed by Ingard

and Bolt, compares the pressure and phase of an incident wave at a

point on the surface of an absorbent material to a similar measure-

ment at the surface of a perfectly reflecting boundary. A contin-

uous recording of these quantities as a function of angle of inci-

dence yields the impedance and absorption coefficient for oblique

angles. Measurements were taken with a six foot square sample

mounted in an anechoic chamber. Due to the finite size of the

sample, the measurements are limited both with respect to frequency

and angle of incidence because of diffraction effects. Without

having analyzed the diffraction problem, the limitations of this

method are determined from experimental results. The low frequency

limit for measurements is inversely proportional to the sample size

which must be large enough relative to the wavelength so that it

behaves as an infinite surface. The upper frequency limit is de-

termined by the accuracy in measuring the phase angle, upon which

the results depend strongly. Further limitations including diffrac-

tion effects, sample geometry, and temperature problems are also con-

sidered with recommendations included for improvement of the surface

pressure method.

The absorption characteristics of several fibrous materials of

the Owens Corning 700 Fiberglas Series were measured to determine the

variation in impedance as a function of incident angle of the sound
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wave. The results indicate that the fibrous absorbents behave as

extended reacting materials. The poor agreement between measurement

and theory for sound absorption based on the parameters of flow re-

sistance and porosity indicates that this theory does not adequately

predict the acoustic behavior of fibrous materials. A much better

agreement with measured results is obtained for values calculated

from the bulk acoustic parameters of the material.



CHAPTER I

INTRODUCTION

1.1 Sound Absorbing Materials

Several types of sound absorbing materials are currently avail-

able for noise control applications. These materials are generally

of a porous nature, constructed either from plastic foams or from

organic or glass fibers held together with a binder, and are avail-

able in the form of flexible blankets or semi-rigid and rigid sheets.

Materials of woven and sintered metals or perforated sheet metals are

also used for special noise control applications under adverse environ-

mental conditions.

There are four factors to be considered in choosing a sound ab-

sorbing material for a particular noise control problem - acoustic

performance, environment, appearance, and price. Since the primary

purpose of these materials is to control the sound reflection from

a surface and thus reduce the overall noise level, the most important

factor is the acoustic behavior of the material. Secondly, the envi-

ronment in which the material will be used must be considered so that

it will not interfere with its acoustic performance. As a minor fac-

tor, the appearance of the material becomes important in certain ar-

chitectural applications. Finally, the cost of the material must be

considered so that a material which meets the desired acoustic stand-

ards is an economically feasible solution to the problem.

The sound absorbing properties of a material are most often de-

scribed by two parameters - the absorption coefficient and the specif-

ic normal impedance. When a sound wave impinges on the surface of an



absorbing material, part of it is reflected and part of it is absorbed

and dissipated. The amount of sound energy dissipated is called the

absorption coefficient, which ranges in value from zero for a perfect-

ly reflecting surface to 1.0 for a totally absorbing surface. If the

material is placed in a diffuse field where sound waves are incident

at all angles, the random incidence or statistical absorption coef-

ficient is used to describe the amount of sound energy absorbed by

the material. The specific normal impedance is the ratio of the acous-

tic pressure to the normal particle velocity at the surface of the

material. These two properties are a function of the surface charac-

teristics, internal structure and thickness of a material, the mount-

ing conditions, the frequency, the sound intensity, and the angle of

incidence for the sound wave.

1.2 Methods for Measuring the Sound Absorption of Materials

The absorption characteristics of a material are commonly measured

using two standard techniques.

1. Standing Wave Tube Method

If a sample of material is placed at one end of a rigid-

walled tube and a sound source at the other, an incident wave

will be reflected from the surface of the material and, for pre-

ferred modes of propagation, will generate a standing wave be-

tween the source and the material. The properties of the

standing wave can be measured to yield the absorption coefficient

and impedance of the sample for a 'plane wave at normal incidence

to its surface (1).

2. Reverberation Room Method

The reverberation time - the time for the sound pressure to
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decay to a value one thousandth of its original value - is mea-

sured for a room with acoustically highly reflecting surfaces.

When a large sample of material is placed in this room, the

statistical absorption coefficient of the sample can be deter-

mined from the change in reverberation time (2).

Several relationships and graphs (3) are available for calculating

the statistical absorption coefficient from data obtained with the

standing wave tube method.

The majority of work with sound absorbing materials has been

restricted to absorption at normal incidence. This is because ex-

perimental procedures become much more difficult when considering

sound absorption at oblique incidence. A few of the more common

measurement techniques for determining the acoustic behavior of a

material at oblique incidence are listed.

1. Interference Pattern Method

A large sample is mounted in an anechoic chamber in the

presence of an obliquely incident sound wave. An interference

pattern similar to the pattern generated in a standing wave tube

is investigated to determine the absorption characteristics of

the material at oblique incidence (4).

2. Pulse Method

If a sound source located a distance from a material at an

angle to the normal to the surface emits a short sound pulse,

a microphone can be positioned to measure two pulses - the direct

pulse from the source and the reflected pulse from the sample

surface. A consideration of the geometrical configuration and

the measured intensities reveals the absorption coefficient of
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the material for a particular angle of incidence. A large sample

and free field conditions are required for this method (5).

3. Standing Waves in a Rectangular Room

The natural modes of a rectangular room determine the angles

of incidence for plane waves reflected at the walls. By covering

certain walls of the room with a sound absorbing material, the

absorption coefficient can be determined for specific angles of

incidence and frequencies (6).

4. Acoustic Waveguide

Similar to an electromagnetic waveguide, an acoustic wave-

guide is a rigid walled duct which limits wave propagation

within it to its principal and transverse modes. If a sample

of material is placed at one end of the tube and a sound source

at the other, the oblique incidence behavior of a material can

be measured by employing the transverse modes of the duct

(7, 8, and 9).

5. Surface Pressure Method

A sample is mounted in an anechoic chamber in the presence

of obliquely incident sound. The pressure and phase of the

incident wave at the surface of the absorbing material are

compared with similar measurements at the surface of a perfectly

reflecting boundary. From this data, the absorption character-

istics can be determined as a function of incident angle (10).

In all of these measurement techniques, it is important to first

determine the limitations inherent with each method before the absorp-

tion characteristics of a material can be measured. The surface

pressure method will be the subject of further study and is discussed
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in detail in Section 4.3.

1.3 Statement of the Problem

Of all the sound absorbing materials commercially available,

glass fiber absorbents are one of the most economical products in

terms of noise reduction per cost of material. These materials are

fairly inexpensive and possess high absorption characteristics over

a very broad frequency range. Although the absorption characteristics

of these materials at normal incidence are fairly well known, their

oblique incidence acoustic behavior has not been completely investi-

gated. This is because measurements at oblique incidence are much

more difficult to perform than measurements at normal incidence.

Therefore, a suitable oblique incidence measurement technique should

be investigated for determining the acoustic properties of these

materials at oblique angles of incidence.

It would also be helpful to be able to predict the acoustic

absorption of a fibrous material from a knowledge of its physical

properties and parameters. Although several theories for sound

absorption by a porous material have been developed, these theories

cannot be universally applied to all materials because the mathematic

models characterize some absorbents better than others. Therefore,

the limitations of these theories with respect to fibrous materials

must be determined.

1.4 Purpose of the Research

The purpose of this study is to determine the validity of the

surface pressure method as a technique for measuring the specific

normal impedance and absorption coefficient of a material at oblique
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incidence. It is hoped to determine under what conditions and over

what frequencies this technique provides reasonable measurements of

the acoustic characteristics of a material. The behavior of fibrous

absorbents of the Owens Corning 700 Fiberglas Series is investigated

to determine the variation in specific normal impedance as a function

of incident angle. Furthermore, measured values of absorption are

compared with calculated values to determine if theories for porous

absorbents adequately predict the acoustic behavior of glass fiber

materials.



CHAPTER II

MATERIALS AND THEIR PROPERTIES

Because of the low cost and the high acoustic absorption of glass

fiber materials, the acoustic properties of several samples of this

type material were investigated. These samples are marketed by Owens

Corning as the Fiberglas 700 Series of Industrial Insulation and are

used for insulating duct work and equipment operating at high tempera-

tures. The Fiberglas 700 Series products are constructed of inorganic

glass fibers held together with a binder and pre-formed into semirigid

and rigid rectangular boards of varying densities. These materials

are available in 24" x 48" boards and in thicknesses of 1" to 4" with

1/2" increments. Although these products have been designed as insu-

lation materials, they also possess highly desirable sound absorbing

properties. However, the acoustical properties of each material are

quite variable, both within manufacturing tolerance specifications

and from one position to another in the same board or in different

boards. The acoustical properties of greatest importance will be

described.

The porosity of a sample is defined as the ratio of the volume

of voids within the sample to the total volume of the sample. The

porosity of a fibrous material can be calculated if the densities of

the material and the glass fibers which comprise it are known. For

a fibrous material, the weight and volume of the binder which cements

together the densely packed fibers must also be included. For a

material with negligible binder by weight, the porosityf is



L= - (2.1)

fr = (2.2)

where

V = volume

S= mass

f = density

The subscripts q,m , and r refer to the voids within the material

(therefore air), the material, and the fibers respectively. Since

the density of the material is much greater than the density of air,

we will assume that the mass of the material is approximately equal

to the mass of the fibers.

M\ YCM (2.3)

This is a reasonable assumption as can be seen by considering the

error for the extreme cases of a porosity of .90 and .99 for the

materials. The relationship between the mass of the material and

the mass of the fibers is

S + /0 (2.4)

For a porosity of .90 we have

m _ \ + 0.004

where the density of air was taken as 1.18 kg/m3 and the density of

the fibers as 2.5 x 103 kg/m 3 . Similarly, for a porosity of .99



-o + 0. 041
Yf

Therefore, the expression for porosity (11) can be written as

nk P-(2.5)P/0
where

Pm = density of material

P = density of glass fibers (2.5 x 103 kg/m3

The specific flow resistance of a layer of material is defined

as the pressure drop across the specimen divided by the particle

velocity of air through and perpendicular to the two faces of the

layer. Thus,

where

1\ = pressure drop across the sample (dynes/cm
2)

U = particle velocity (cm/sec)

The units of, Nare dyne-sec/cm 3 or CGS rayls. For bulk materials,

the flow resistivity or specific flow resistance per unit thickness

of material is commonly used. Thus,

ns d
where d is the thickness of the material. In all future work, the

term "flow resistance" as applied to a sound absorbing material will

mean the specific flow resistance per unit thickness. The flow re-

sistance is essentially constant for values of A from 0 to some small

value and increases rapidly with increasing values of U above this

linear range.
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Table 1 lists the performance characteristics of the Owens Corning

700 Fiberglas Series including flow resistance values (12, 13). Due to

the manufacturing tolerances in both density and fiber diameter for

these materials, a corresponding range of flow resistance values would

be expected. The discontinuity in the flow resistance versus density

curve for the 704 and 705 samples is due to a coarser fiber for these

two products. The statistical absorption coefficients determined by

the reverberation chamber method for these materials mounted with a

rigid backing are listed in Table 2 for data furnished by Owens

Corning (14).



TABLE 1

Performance Characteristics of Owens Corning 700 Series Fiberglas

Specific Flow Resistance - (cgs rayls/inch thickness)
Density Average Density and Range Within Manufacturing

Type (lb/ft3) Porosity Fiber Diameter Specifications

701 1.58 .990 26 19-35

702 2.25 .986 38 27-56

703 3.00 .981 60 42-87

704 4.20 .973 45 35-57

705 6.00 .961 78 60-99
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TABLE 2

Statistical Absorption Coefficient for Owens Corning 700
Series Fiberglas Materials Mounted with a Rigid Backing

Statistical Absorption Coefficient

Type Thickness 250 Hz 500 Hz 1000 Hz 2000 Hz 4000 Hz

701 1" .20 .57 .88 .86 .79

2" .58 .92 .93 .86 .79

702 1" .19 .50 .85 .85 .76

2" .54 .91 .97 .87 .77

703 1" .22 .62 .95 .90 .82

2" .59 .93 .98 .87 .78

704 1" .18 .51 .89 .88 .80

2" .47 .90 .97 .86 .78

705 1" .19 .57 .93 .90 .83

2" .55 .91 .97 .87 .78



CHAPTER III

THEORETICAL BACKGROUND

3.1 Introductory Theory

We begin the theoretical analysis of sound waves and acoustic

absorption by considering the simplest case of a plane wave at nor-

mal incidence to the surface of an absorbing material as in Figure 1.

The wave equation for the pressure p

a (3.1)

has a solution of the form

T e ?t(Wt - - , e Wt + (3.2)

The first term represents an incident wave propagating in the positive

x direction i and the second term represents a reflected wave P, so

that

-pi Y (3.3)

= (3.4)

The particle velocity for a plane wave in terms of the pressure is

v (3.5)

Since the velocity is also a solution to the wave equation, we have

V -= 9 "  e (3.6)
IpC

where the incident particle velocity is Vi and the reflected particle

velocity is V .

SV .', ) Y x) '(3.7)
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V' = V- e (3.8)

The minus sign in Equation 3.6 occurs because the velocities are vector

quantities traveling in opposite directions. The acoustic properties

of a material are defined by the specific normal impedance Z which is

the ratio of the pressure to the normal particle velocity at the sur-

face. Unless otherwise noted, the term "impedance" as used in this

study will refer to the specific normal impedance defined above and

will have the dimensions of Nt sec/m 3 or MKS rayls. If the pressure

and velocity are out of phase, the impedance will be complex, having

a real and imaginary component.

z -'R +iX (3.9)

R is called the resistance and X is called the reactance. Thus, we

have

z =
V Ik= o  (3.10)

S- (3.11)

Rearranging Equation 3.11 yields the reflection coefficient tr

z-Pc
- - (3.12)

The absorption coefficient is a measure of the energy absorbed by the

material and is defined by

Scc -i (3.13)

In terms of the impedance of the material and Equations 3.12 and 3.13,

the absorption coefficient is
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O4RP (3.14)

The impedance and absorption coefficient for plane waves at normal

incidence to a material are not constant but are a function of several

factors including frequency, material properties and thickness, and

mounting conditions.

For some materials, the impedance and absorption coefficients are

also a function of the incident angle of sound (15). A material is

termed locally reacting if the impedance is independent of the angle

of incidence, while extended reaction occurs for materials whose

impedance varies with angle of incidence. For a plane wave incident

at an angle e to the normal to the surface in Figure 2, the impedance

ise

Ze r (3.15)

iicos ) Cos

From the diagram, \;, and Vth are the normal components of the incident

and reflected particle velocities so that

- C os (3.16)
PC

V ' (3.17)

Therefore, the impedance is

e os + (3.18)

and the reflection coefficient b is
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Figure 1 Plane Wave Propagating Normal to the Surface of Material

,4 .

Figure 2 Plane Wave Propagating at Oblique Incidence
to the Surface of Material
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C -s z-pc (3.19)

'3; Z. cose + fr

If the material is locally reacting, then for all angles of incidence,

we have

Z e Z (3.20)

If the impedance for any angle 8 is known, the absorption coefficient

can also be determined. From Equation 3.13, the absorption coefficient

for oblique angles is

oCe  .(- \\Z (3.21)

where the plane wave reflection coefficient )' is defined by Equation

3.19.

It would be highly desirable to be able to predict the acoustic

behavior of material from knowledge of its physical properties. Sev-

eral theories for sound absorption based on the acoustic properties of

a porous material have been developed. The theories of both Beranek

and Ford have used the parameters of flow resistance and porosity to

predict normal and oblique incidence behavior of a material. Using

normal impedance measurements, Pyett has determined the bulk acoustic

parameters of a material which are used in predicting the acoustic be-

havior at oblique incidence. Each of these theories will be presented

in the following sections.

3.2 Beranek's Theory for Porous Materials

Beranek (16) has developed an expression for the specific normal

impedance of a porous material in terms of three constants - the flow

resistance, porosity, and the density of the enclosed air. The
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continuity equation and force equation are derived and then combined

to give the wave equation for propagation within the material. We

begin by considering the incremental volume of material in Figure 3.

This volume Sx contains a volume of solid matter SatX and a volume

of air Sax,+ Sbx Z such that the porosity is

- - (3.22)
.hx. + k,/.)

where S S,+ 5.

The continuity equation for the air passing through the material is

-P kA) (3.23)

which becomes

Si-0 (3.24)

Beranek assumes that the cycles of condensation and rarefaction of the

enclosed air in the material occur isothermally, which he states is

valid for many acoustic materials and especially for frequencies below

2000 Hz. Therefore, for an isothermal process at atmospheric pressure

_V - (3.25)

and

___ - k. (3.26)

If A&o is the acoustic pressure p, the continuity equation becomes

- - . O (3.27)

which for steady state conditions is

4 (3.28)

The net force applied to the incremental volume of Figure 3 is
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Figure 3 Incremental Volume of Material
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S - + (3.29)

This force will be opposed by the sum of the mass times the accelera-

tion of the air and solid particles in the incremental volume and by

a force dependent on friction - therefore the flow resistance. If U

is the average velocity of particle motion through the face S, then

the following continuity equation holds

Su = 5' 4 S (3.30)

where U, is the velocity of particle motion through 5 and K is the

velocity of the solid matter of area 5 . The flow resistance of the

material introduces a force that will oppose the air flow through

the material. This force due to friction F is then

F = 7l, x5Lu (3.31)

where s is the specific flow resistance per unit thickness. Since U,

will be zero for non-moving solid, we have

F=R = R a".. 5,u, (3.32)

and

-t- 3 (3.33)

The forces on the areas 5, and 5. are

"SL", Z - .+ S1 a'A(2 ',-_Z) (3.34)

S 2.= Z st tk) 2 2. - LA 1(3.35)
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where p. is the density of the solid matter. Therefore, the force

equation becomes

_- O'X , X L a2 S LX U_ (3.36)

Using Equations 3.30, 3.34, and 3.35, u, and @Ucan be eliminated and

for steady state conditions we have

SI + s, z--I , - (3.37)

If P>>p and (\-j 1 f s1>> j, the equation yields

- + kA + (3.38)

or

- R, L + W / \ (3.39)

where

R= sl(3.40)

P+ (3.41)

It can be shown that the approximations , =s and p =f are valid

for the materials we are interested in. Combining the force equation

and continuity equation, we obtain a wave equation

4 i ) (3.42)
/01 I
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with

C1 - (3.43)

pI

This is of the form of the wave equation in free air

- P = -(3.44)
x4

with k now being a complex quantity ( to account for losses as the

wave propagates in the material

S- \- r I . (3.45)

and

C - (3.46)

The solution to the wave equation can be written in the form

X + (3.47)

where

S- (3.48)

., and A_ are the amplitudes of the forward and backward traveling

waves respectively. The normal component of velocity is obtained

from the force Equation 3.39, and the ratio of p to q at the surface

of the material gives the impedance

z- '- Z j +-" 4n ) (3.49)

The value of 4 is obtained by boundary conditions for the material

as determined by its mounting procedure. For the rigid wall backing
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of Figure 4, L = 0 at ' = 0, so that Z,= co at x = 0. Therefore, the

impedance with a rigid wall backing is

i!- (3.50)

For a plane wave incident at an arbitrary angle e as in Figure 5, we

assume that Snell's law holds

sw=e - (3.51)
C C

and derive the impedance for any angle of incidence. By applying the

boundary conditions for a rigid wall backing, the impedance is

."8 -z COS G (3.52)

and from Equation 3.51

CO SOns (3.53)

3.3 Ford's Theory for Porous Materials

Ford, Landau, and West (17) derive an expression for the reflec-

tion coefficient and impedance of a hard porous absorbent in terms of

the porosity and flow resistance of the material. An air wave incident

at the surface of the absorbent propagates through and within the pores

of the rigid material. It is assumed that the pores are interconnected

in a random manner and are of variable diameter and also that the

porosity is constant over an area which is small compared to a wave-

length.

We begin by examining the force equation and continuity equation

for the porous material. Introducing a coefficient of viscous friction

' (or flow resistance per unit length), the force equation for an
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Rigid Wall

Figure 4 Plane Waves at Normal Incidence to a
Material with Rigid Wall Backing

Y

\ 

Rigid Backing

Figure 5 Plane Wave at Oblique Incidence to a
Material with Rigid Wall Backing
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incremental volume of material is

-9nd~ = O pvt +Kv P I t P-t (3.54)

where k is the velocity potential in the material.

Therefore

A : _ < a , -tD < (3.55)

where

S(3.56)

The equation of continuity for propagation within the material is

d;v v p at (3.57)

From Morse and Ingard (18), the following expressions are developed

s p K (3.58)

C (3.59)

where K is the compressibility of the medium,p is the density, S is

the change in density, and C is the speed of sound in the medium.

From Equation 3.57, we have

1 kvt - - (3.60)
K

Using Ford's notation, this becomes

- (3.61)

where I is the modulus of elasticity of the air in the pores. Sub-

stituting Equations 3.54 and 3.55 in Equation 3.61 results in the

wave equation
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t WP = C(3.62)

Now, we let

; 2 (3.63)

The speed of sound for isothermal ((= 1.0) and adiabatic (X= 1.4)

conditions is CT and C respectively so that

C - (3.64)

S - (3.65)

where <T and is are the isothermal and adiabatic compressibility of

the medium. Since KT =( K', the speed of sound for either condition

or for a value of 1 between these two extremes is

z 2 2 2
C - C Cs (3.66)

where the speed of sound for adiabatic conditions Cs is the same as

the speed of sound in air. The speed of sound in the material becomes

C = (3.67)

where

1 (3.68)

The field in air is described by a velocity potential such that

the pressure and velocity are given by

" = o (3.69)
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V= - od m (3.70)

Similarly, the field in the absorbent is characterized by a potential

t so that the resulting pressure and velocity are given by

S(3.71)

v,=- d (3.72)

where D is the coefficient derived from the force equation. Consider-

ing the absorbent with a rigid backing in Figure 6, the fields can be

described by the following potentials.

S (z - d) cose Z Q-ja osb x Exsine

+ ) (3.73)

t (e t e e (3.74)

We now apply the boundary conditions and introduce Snell's law

sne - S=nfO (3.75)
C Ct

k sin 8 = Kt sin t (3.76)

Continuity of pressure from Equations 3.69 and 3.71 requires that at

t(3.77)

(+ lr = T ( costd e) (3.78)

where T A
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Continuity of normal flow from Equations 3.70 and 3.72 requires that

at 2 =

- DPt (3.79)

i*'oso 't-r = D n"-'"'+os ) T (3.80)

From Equations 3.78 and 3.80, we solve for r to obtain

r , p4cose coth (j,~s e,5) + Dflpc, cose

f tcose coth (jktd cosQt) -IfpcCOS Gt

Using the potential §, the impedance at the surface for a plane wave

incident at an angle 8 is

ZA P , _ P-at

_z (3.82)

cose -r

From equation 3.81, we obtain

Z = pc, cotk (~ d os cS e (3.83)

) ncos et
For normal incidence, e = 0, this becomes

pccoth(iha) (3.84)

3.4 Pyett's Theory for Non-isotropic Porous Materials

Pyett (7) has derived an expression for the specific normal im-

pedance in terms of two experimentally determined propagation para-

meters of a homogeneous porous material. A treatment of wave
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propagation in an isotropic medium is first presented and then general-

ized to the case of propagation in a non-isotropic medium using tensor

notation.

The force equation for propagation of an acoustic wave in an

isotropic medium such as air is

- -ad = p (3.85)

where and 4 are the acoustic pressure and velocity respectively.

The equation of continuity is

61v - (3.86)f t

i - - (3.87)

K

Y\i - (3.88)

where 1K is the compressibility of the medium. Now, taking the diver-

gence of Equation 3.85 and the derivative with respect to time of

Equation 3.88 and combining, we obtain the wave equation

/0 (3.89)

Assuming a time dependence e this becomes

= p (3.90)

where

S <J7T (3.91)

The characteristic impedance Z of the medium will be defined as

Z (p K' (3.92)
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From the force equation

- c~rac P = Z 1 (3.93)

we obtain the velocity

S - td p (3.94)

The quantity f has a real and imaginary component

j = - + (3.95)

where * is the attenuation constant and is the phase constant which

corresponds to \ in air. For a plane wave propagating in the positive

x direction, the pressure and velocity are

j~ -X (3.96)

(3.97)

For an anisotropic medium, p and k( may depend on the direction of

U so it is necessary to use tensor notation for Equations 3.85 and 3.88.

These relations in tensor form become

- . (3.98)

If the f and K tensors are both symmetric and have the same principal

axes, then, referred to these axes, both matrices are diagonal. The

wave equation becomes

S K _ -(3.100)
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with -L

(3.101)

and

z P i (3.102)

The velocity is now given by

S _ (3.103)

The specific normal impedance of a thickness c of a homogeneous

porous material can now be calculated for a plane wave incident at

angle e to the normal. The layer is assumed to be backed by a rigid

wall having an infinite impedance as shown in Figure 7. If the plane

of the incident acoustic ray makes an angle ? with the y axis, then

the sum of the sound pressures of the incident and reflected waves is

p,= ( -, e e , ) e (3.104)

where the time factor , will be omitted. The transmitted pressure,

including the component reflected from the rigid backing is

Ix e, 9x 's 7- r(3.105)

where

r = cosY si'nO (3.106)

5=- sin 77S'tY (3.107)

Substituting the pressure in Equation 3.100, we obtain

r s
4- -i + (3.108)? sy s



32

Z=

Figure 6 Plane Wave at Oblique Incidence to a
Material with Rigid Wall Backing

0x=

Figure 7 Wave Propagating at Oblique Incidence to Material
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The velocity in the x direction is

"A 9A- - 57- (3.109)

We now apply the boundary conditions at the surface and backing of

the material. Continuity of pressure across the surface Y = 0 requires

At5= A,+]O (3.110)

Because of the rigid backing, , = 0 at X=d and

Ae - e = o (3.111)

Therefore, the specific normal impedance at X= 0 is

Z(d,e = - cot (c) (3.112)

The value of q from Equation 3.108 is

± k~ ~si e (3.113)

The expression for 9 can be simplified if either =0 or Y= 1Z

\+ (3.114)

We define an arbitrary angle 4 by

k i = Si (3.115)

The angle 0 has no meaning beyond the above definition except for the

case of zero attenuation 0'= 0, when it is identical with the angle of

refraction given by Snell's law

3ine Z. SI rIn (3.116)
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When o' and 'y are small compared with and fi, Equation 3.114

becomes

Furthermore, when G3F y  = e/Ax Equation 3.117 is simplified to

a + COS (3.118)

The two propagation parameters for the material are q , the propagation

constant, and Z,, the characteristic impedance. For normal incidence

e= 0 and q = , and Equation 3.112 becomes

z(d4, 0= Z cothk 5A, (3.119)

The two propagation parameters can be determined from normal impedance

measurements for samples of different thickness. If the thickness of

the samples are in the ratio of 1 to 2, and the samples are backed by

a rigid wall, the impedance will be

z (a, o~ Zx th (Sd -R +  X (3.120)

Z(24,o 0 ct( ,d R'+ x' (3.121)

so that

Z(do) - \ + cosh(&3(d1- (3.122)
Z (zd,o coh (2Yi4'

Rearranging Equation 3.122, we have

=' x' - / (3.123)

where

S='') (3.124)
I, - R_.-e ,X -\ X'\2
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V (3.125)

Using a standing wave tube for normal impedance measurements, the

measured values of R, X, 'FI, and X1 from Equations 3.120 and 3.121

are inserted in Equations 3.124 and 3.125. The values of 2xS4 in

Equation 3.123 may be determined from nomograms for the hyperbolic

cosine of a complex argument (19) or, as in this case, determined by

an iteration technique (20) for complex numbers using the IBM 370

computer. This iteration technique is discussed in Appendix A. From

Equation 3.95, the value of f is

S=q" + i(3.126)

Oncex has been determined, Z may be calculated from Equation 3.119.

Using these values, the impedance can be calculated as a function of

incident angle from Equations 3.112 and 3.118. The validity of these

theoretical approaches will be discussed in Section 5.4 in connection

with the presentation of the experimental results.



CHAPTER IV

PROCEDURE AND TECHNIQUES

4.1 Standing Wave Tube

Measurements of the normal incidence behavior of absorbing

materials can be made using a standing wave tube, also known as an

impedance tube or constant length acoustic interferometer. A Bruel

and Kjaer Type 4002 Standing Wave Apparatus, which meets the specifi-

cations of ASTM Standard C384-58 (1), was used for measuring the

impedance and absorption coefficients at normal incidence. The

apparatus consists of a rigid walled tube with a sound source at one

end and the sample of absorbing material to be tested at the other

end as shown in Figure 8. The sound field in the tube is generated

by the loudspeaker and pressure levels are measured with a moveable

probe microphone. The formation of a reflected wave at the absorbing

material generates a pattern of standing waves. The sound pressure

at a distance X from the sample is the sum of the incident wave P

and the reflected wave p, (21).

p= Ael t e t+ (4.1)

The wavenumber k is complex, to account for attenuation in the tube.

However, if we assume that losses in the tube as the sound wave

propagates are negligible, then the wavenumber I has only a real part

1 so that = K =W/C. If we can determine the phase and magnitude

of the reflected pressure amplitude 1 relative to A, the specific

normal impedance can be determined. If the reflected pressure ampli-

tude is complex, it may be written as



microphone
probe material

loudspeaker rigid
backing

Figure 8 Standing Wave Tube
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3:K=Be = \r \ (4.2)

so that

= ( 5e + e (4.3)

where ., =  x and 7 -- + *

The acoustic pressure is the real part of Equation 4.3

(A +3 coKK - (K-%5A, , cos (- ) (4.4)

and the amplitude of the standing wave pattern is

From Equation 4.5 pressure maximum and minimum will be located at

antinodes and nodes respectively such that

,z = N A C\r+ ri (4.6)

tmi = A -\rl) (4.7)

For the conditions of a minimum at a point X , Equation 4.7 indicates

that all nodes will be located at positions such that Sn(K +

will be a maximum. Therefore,

k\r+ r _(4.8)

and

n, (4.9)

The wavelength \ can be measured directly by taking the distance

between successive minimums at X and n+) . The standing wave ratio

5WR is the ratio of maximum and minimum pressures
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W - a_ - 1 _I (4.10)

Thus,

S- (4.11)
A S R +

The specific normal impedance at the surface of the material is then

- (4.12)

Finally, the absorption coefficient can also be determined and is

O4 = \ - \r (4.13)

A moveable probe microphone is inserted in the tube so that ', and SW

can be measured.

ASTM Standard C384-58 lists specifications for low and high

frequency limits of measurements based on impedance tube dimensions.

The lower limiting frequency is determined by the length L of the

tube in feet and is given by

= \000 (4.14)
L

Similarly, the upper limiting frequency i for measurements is given

by

- 000 (4.15)

where b is the diameter of the tube in inches. Within this frequency

range higher order modes of propagation are restricted, and we have

only plane wave propagation in the tube. Because of these limitations,

two tubes of different sizes were used to take measurements over the

frequency range of interest. These limits, together with the limits

for measurements specified by Bruel and Kjaer (22) for each size tube,
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are listed in Table 3. The standing wave tube provides a quick and

inexpensive means of determining the relative absorption properties

of many materials in a short period of time. However, the absorption

of most materials is higher at oblique incidence than at normal inci-

dence. Since propagation within the tube is limited to plane waves,

the impedance tube measurement gives an absorption coefficient which

is usually the minimum performance expected for a material.

TABLE 3

Frequency Limits for Standing Wave Tube Measurements

Frequency Limits

Bruel and Kjaer ASTM Standards
Tube
Size Length Diameter Low High Low High

Large 40" 1 1/8"(3cm) 90 Hz 1800 Hz 99 Hz 2030 Hz

Small 13 3/4" 3 7/8"(10cm) 800 Hz 6500 Hz 288 Hz 6780 Hz

4.2 Flow Resistance

The apparatus used for flow resistance measurements, shown in

Figure 9, follows specifications outlined in ASTM Standard C522-69 (23).

Since the fiberglass samples are not completely rigid, caution must be

used in inserting the material in the sample holder because compressing

the material would yield a high flow resistance. With the flow control



Flow
Pressure ControlPressure

Regulator Gauge Valve Jet Nozzle

Microvalve
Reserve
Tank

Micromanometer

SampleSampHolder Flow Meters
Holder9 

Flow Resistance 
Apparatus

Figure 9 Flow Resistance Apparatus
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valve closed and the pressure regulator adjusted, the inlet supply

valve is opened to fill the reserve tank. As the flow control valve

is opened, flow through the jet nozzle causes a vacuum at its center

section which draws air through the sample and the rotameters and then

out the jet. With the rotameter valves fully opened, the flow control

valve is opened until the maximum flow rate of 1700 cc/min is achieved.

The flow can now be regulated from 0 to 1700 cc/min using the micro-

valve alone. Since the pressure drop across the specimen for these

flow rates is on the order of thousandths of an inch of water, it is

measured using a micromanometer. The pressure drop in units of dynes/

2 .cm is

h 2490 h (4.16)

where ~ is the pressure drop in inches of water. The particle veloc-

ity in cm/sec can be determined from the cross sectional area A of

the sample and the flow rate Q in cc/min

U - (4.17)
60A

The specific flow resistance per unit thickness d in cgs rayls/inch

is then

(4.18)

For an area of 8.73 cm2 , this becomes

R.S= 10 (4.19)
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where

= pressure drop in inches of water

Q = flow rate in cc/min

Since the flow resistance increases rapidly with k , it is important

that measurements of flow resistance be performed within a range of

values for U corresponding to particle velocities encountered in sound

pressure levels appropriate to noise control problems. The sound

pressure level in decibels, re. 0.002 microbars, which corresponds

to a certain particle valocity can be determined from the following

equation

ZO -ZO (4.20)

SL = 20 og1,Q 4A 51.b (4.21)

and is listed in Table 4 for the range of flow rates used in testing.

4.3 Surface Pressure Method

Measurements of the absorption characteristics of a material

at oblique incidence were taken using a free field measuring technique

first presented by Ingard and Bolt (10). This method, known as the

surface pressure method, compares the pressure and phase of a plane

wave measured as a function of incident angle at a point on the sur-

face of an absorbent material to a similar measurement at the same

point in space at the surface of a completely reflecting panel. A

sufficiently large sample is assumed so that the theory of reflection

from an infinite plane boundary can be used in the analysis. The

two measurements are illustrated in Figure 10. In future use, the
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TABLE 4

Flow Rate Versus dB Level, re. 0.002 Microbars,
for Flow Resistance Measurements

Flow Rate (cc/min) dB Level

10 71.8

20 77.8

40 83.8

80 89.8

100 91.8

150 95.3

200 97.8

400 103.8

600 107.4

800 109.9

1000 111.8

1200 113.4

1400 114.7

1600 115.9

2000. 117.8
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pressures p, and p, will be referred to as the hard wall pressure

and the absorbing surface pressure respectively. Assuming the pressure

of the incident wave is yi , the following relationship can be written

for , and .

,i + 2- , P (4.22)

Si + ? ea (4.23)

The relationship between these expressions can be visualized by the

vector diagram in Figure 11, where Y = From Equation

4.22 and 4.23

(4.24)

S2-

Z (4.25)

and from the vector diagram

4cos si n Y) (4.26)

= OS + i h W(4.27)

Now, combining Equations 4.26 and 4.27

T2-'- +T2. (4.28)

Dividing Equation 4.28 by \ we obtain

S, Cos - (4.29)
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Hard Wall Pressure

Absorbing Surface Pressure

Figure 10 Surface Pressure Method Measurements

Figure 11 Phase Relations Between Measurements
with the Surface Pressure Method
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The absorption coefficient as a function of incident angle is then

0S (4.30)

For an incoming wave at angle ( , the incident and reflected pressures

are related from Equation 3.19 as follows

-Z ef E 0 ' (4.31)
z ecos E + c

where Ze is the specific normal impedance of the material at the

angle . Letting = Z and W = = E. e we have

coseW cose (4.32)
Scose + 1

Therefore, for measurements using the hard wall pressure K as a

reference, the normalized impedance is given by

SW (4.33)
- w cosse

If the reference pressure is measured for free field conditions instead

of at the surface of the perfectly reflecting boundary, we then have

for the free field pressure r3

NZ Z (4.34)

The expressions for absorption and impedance, using a free field

pressure as a reference, are now

Scos - (4.35)
'P3 T
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W (4.36)

2- W ( -oSC)

Therefore, a reference pressure for measurements can be taken either

for free field conditions or at the surface of a perfectly reflecting

boundary.

The experimental arrangement for the surface pressure method is

shown schematically in Figure 12. The material to be tested is mounted

on a panel and placed in an anechoic chamber. The measurements at the

material surface and at the reflecting surface (or free field position)

must be made at the same point in space so that no additional phase

shift between the two is introduced. The surface of the material

and the surface of the reflecting panel must then occupy the same

plane in space. A probe microphone located either at the surface of

the material or at the surface of the reflecting boundary measures

the pressure. The phase difference between the electrical driving

voltage to the loudspeaker and the acoustic pressure at the reflecting

surface is Y . The corresponding phase difference for the measure-

ment at the surface of the material is 'z ° Thus,

S= '- Y = z- (4.37)

As the sample rotates in the presence of an approximately plane wave,

the pressure and phase are recorded continuously as a function of

incident angle.

A few differences exist between the surface pressure method as

performed by Ingard and Bolt and as performed in this study. The

"hard wall" used by Ingard and Bolt was an eight-foot square panel

rotated about a vertical axis at a speed of approximately one half
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Figure 12 Schematic for Surface Pressure Method Tests
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revolution per minute. A large horn speaker was used as a sound

source and the pressure at the surface of the material and panel

was measured using a probe tube connected to a 640-AA condenser

microphone.

The initial attempt to investigate this method was made using

a three-foot square panel as the reflecting surface. To satisfy

the conditions of a hard walled rigid surface, the panel was con-

structed of a three quarter inch plywood board with a one-eighth

inch thick aluminum sheet bonded to its surface. The panel was

mounted on a turntable in the anechoic chamber and rotated about its

vertical axis at a speed of approximately 1/3 revolution per minute.

The pressure and phase were recorded continuously as a function of

incident angle with a Bruel and Kjaer Type 4136 quarter inch con-

densor microphone mounted at the center of the board. Preliminary

tests concluded that the three-foot panel was too small for the assump-

tion of an infinite reflecting surface to be valid for the frequency

limits of interest in this study. Limitations regarding sample size

will be discussed in Section 5.3. As an alternative, a larger six-

foot square panel of similar construction was used as the "infinite"

reflecting surface. Due to the size and weight of this board, it

was held stationary while the sound source was mounted at the end

of a boom and rotated about the vertical axis of the board at a

fixed distance of 8'4". The sound source, a CTS 4 1/2" diameter mid-

range speaker enclosed in a 4" x 4 1/2" x 7 1/2" wooden.box, was

suspended from the boom as shown in Figure 13 at the same vertical

height as the Bruel and Kjaer Type 4136 quarter inch microphone

mounted at the center of the panel.
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Figure 13 Sound Source for Surface Pressure Method Tests
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The distance between the source and microphone must be kept con-

stant for testing samples of varying thicknesses so that no additional

phase shift is introduced in the phase angle measurement. The piston-

type mounting arrangement shown in Figure 14 allows the panel to be

moved horizontally so that the surface of the absorbing material and

the reflecting boundary can be placed at the same plane in space for

each measurement. The positioning of the surface was facilitated by

using a plumb bob suspended from a fixed point above the reflecting

panel. The apparatus is shown in Figures 15 and 16 for a hard wall

pressure and surface pressure measurement respectively. Since

measurements of the pressure and phase for several different samples

were recorded and then compared to a reference measurement, it was

necessary to monitor temperature variations in the chamber. The

effect of temperature changes on phase measurements will be shown

in Section 5.3.
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Figure 14 Mounting Arrangement for Reflecting Panel
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Figure 15 Panel with Hard Wall Surface

Figure 16 Panel with Surface of Sound Absorbing Material



CHAPTER V

DISCUSSION OF RESULTS

5.1 Standing Wave Tube

The results of absorption measurements at normal incidence using

the standing wave tube described in Section 4.1 are shown in Figures

17 to 22 for one-inch thick samples of Owens Corning 703, 704, and 705

Fiberglas. These three samples were taken from the materials used in

the surface pressure method tests. According to limits set by both

Bruel and Kjaer, and the ASTM Standards, measurements with our appara-

tus should be possible for frequencies up to 6000 Hz. However,

successive pressure minimums did not repeat at half wavelength inter-

vals for measurements at 6000 Hz. This effect would tend to discredit

absorption measurements at the high frequency limit of the standing

wave tube. There is some question as to whether these limits are

valid for measurements with both locally reacting and extended reacting

materials. For an extended reacting material, the behavior at a point

on the surface of the material is affected by the behavior at an

adjacent point. In this case, then, there is a possibility modes

would be generated that would interfere with plane wave propagation

within the tube.

The agreement between measurements for an overlapping frequency

range using the large tube and the small tube is quite good, indicating

that the absorption of the fibrous materials is independent of sample

size. For each material, the resistive component of the impedance is

positive, being essentially constant over the frequency range from

500 Hz to 3000 Hz, while the reactive component of the impedance has
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a large negative value at low frequencies which increases as the

frequency is increased. Although the reactance is approximately the

same for each of the 1" thick samples of Owens Corning 703, 704, and

705 Fiberglas, the resistance for each sample is different. This can

be explained by the difference in flow resistance for each material.

In Section 5.4, it will be shown that an increase in the flow resist-

ance of a material will raise the value of the real component of the

impedance but will not affect the reactance. This result is consistent

with the flow resistance measured for each sample and described in

Section 5.2.

5.2 Flow Resistance

The specific flow resistance per unit thickness of the material

was measured using the apparatus discussed in Section 4.2. Each

2
sample tested was one inch thick and had an area of 8.73 cm . The

samples were taken from the materials used for the surface pressure

method tests and were removed from a position adjacent to the sample

used for standing wave tube measurements. In this manner, a smaller

variation in acoustic properties between the two samples would be

expected. The flow resistance for two samples is shown as a function

of the flow rate in Figure 23, and is in general constant for the

linear velocity range. The increase in flow resistance for low flow

rates is due to the error in measuring pressure drops of only a few

thousandths of an inch of water rather than to the properties of the

material. The value of flow resistance per unit thickness for each

of the fibrous materials was determined by taking the average of

several measurements at the maximum flow rate of 1600 cc/min. These

values are listed in Table 5, together with the range of values
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specified by Owens Corning for manufacturing tolerances. The measured

values were roughly one third of the flow resistance values for nominal

density and fiber diameter and were below the lower limit of the range

of values for manufacturing specifications. These low values prompted

further testing to determine the validity of these measurements. To

guard against air leaking around the sides of the sample, vaseline

was used as a seal between the material and the sample holder with no

appreciable change in flow resistance measured. These abnormally low

values cannot be explained unless the samples tested all came from

high tolerance production runs. It will be shown later that neither

the measured value or nominal value of flow resistance is high enough

to calculate impedance values from theory that are comparable to

standing wave tube measurements. This indicates that the flow resist-

ance for a fibrous absorbent does not provide a complete means of

specifying its acoustic properties. This limitation will be discussed

in connection with the theoretical results in Section 5.4.

TABLE 5

Flow Resistance Data for Owens Corning 700 Series Fiberglas

Specific Flow Resistance (cgs rayls/inch)

Average Density and Range Within Manufacturing
Type Fiber Diameter Specifications Measured

701 26 19-35 --

702 38 27-56 12.83

703 60 42-87 20.77

704 45 35-57 15.55

705 78 60-99 26.30
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5.3 Surface Pressure Method

Before considering the impedance and absorption coefficient

measured by the surface pressure method, we will investigate the

pressure and phase measurements. It is obvious that measurements with

this method are limited both in frequency and angle of incidence due

to diffraction effects from the finite size of the sample and the re-

flecting surface. Not having analyzed the problem theoretically,

these limitations will be determined from experimental results.

The surface.pressure pz measured as a function of incident angle

at the center of a six-foot square sample of one-inch thick Owens

Corning 705 Fiberglass is shown in Figure 24 for several frequencies.

As the incident angle increases from normal incidence, the pressure

decreases slowly until a cut-off angle is reached where the pressure

drops rapidly. Furthermore, as the angle of incidence approaches 90

degrees or grazing incidence, jz approaches zero. The pressure P

at the surface of an absorbing material with a specific normal imped-

ance is given by Equation 4.32 in terms of the pressure , at the

reflecting surface. Thus,

_ 'Pc~ose (4.32)

Iose +

For a finite impedance, Pz will approach zero as ) approaches 90

degrees, and for a surface with an infinite impedance, 2 approaches

. However, since we can never have an infinite impedance, 
even

for the perfectly reflecting surface, a similar pressure drop will be

observed for the hard wall pressure as E approaches 90 degrees. The

angle at which this pressure drop occurs for the hard wall measurement

will limit oblique incidence measurements. The experimentally
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determined cut off angles for measurements with the six-foot square

reflecting surface are taken at the point where this pressure drop

begins to occur and are listed in Table 6.

TABLE 6

Cut Off Angles For Hard Wall Pressure Measurements

Frequency Cut Off Angle

1000 680

2000 750

3000 780

4000 800

5000 820

6000 820

The pressure ratio i/'z, in decibels between the surface pressure

for a sample of Owens Corning 705 Fiberglas and the hard wall pressure

is shown in Figure 25. The corresponding phase measurements are

shown in Figure 26. As seen by the curves, the surface pressure

relative to the hard wall pressure approaches zero as E approaches

90 degrees.

The hard wall pressure measured as a function of incident angle

at the center of a three-foot square perfectly reflecting panel is

shown in Figure 27 for several different frequencies. As the incident

angle is increased, the pressure alternately passes through a series

of maximum and minimum values. As would be expected, the phase
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component exhibits a similar pattern with a peak-to-peak phase varia-

tion of 20 to 30 degrees. The behavior of this pattern indicates

some sort of diffraction effects due to the finite size of the re-

flecting panel. As the frequency is increased, the magnitude of this

pressure fluctuation decreases. Therefore, at high frequencies where

the wavelength is much smaller than the dimensions of the surface,

the reflecting panel better approximates an infinite surface and

diffraction effects are less prominent. Recent work by Hughes (24)

indicates that an incident wave diffracted by the sharp discontinuity

at the edge of a finite size panel produces a significant secondary

source at this edge. The wave from this secondary source travels

along the face of the panel and is measured together with the incident

wave by the microphone at the center. For certain angles of incidence,

these pressures will combine so that the total pressure will have

maximum and minimum values. From Appendix B, these maximums and

minimums will be located at angles E such that

1. ) = 900

2. ~sh = - =O, i, 2...

where

Ok = the horizontal dimension of the panel

= the wavelength

The first condition is satisfied at grazing incidence where the pres-

sure will approach zero as 0 approaches 90 degrees. This result

was previously verified by the hard wall pressure measurements and

by Equation 4.32. The second condition locates the maximum and

minimum pressures as a function of incident angle. For a three-foot

square panel, the angles at which the measured and predicted pressure
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variations occur are listed in Tables 7 and 8. Diffraction patterns

from perfectly reflecting square baffles in an anechoic tank (24)

reveal pressure fluctuations similar to those measured with the re-

flecting panel in air for equal ratios of the length of a side of the

panel to the wavelength. Thus, we would expect similar results for

tests at different frequencies and with different board sizes if the

ratio between the length of a side of the panel q and the wavelength

were the same. Therefore, comparing equal values of \a , where k

is the wavenumber, similar pressure patterns for measurements with

different size reflecting surfaces would be obtained for frequencies

related by

a (5.1)

ko (5.2)

where - and c are the frequency and horizontal dimension of the panel

respectively for each measurement. These results are confirmed in

Figure 28 for the hard wall pressure measurements at the surface of a

two-foot square reflecting panel.

To reduce or eliminate the fluctuations in pressure and phase

due to diffraction, several modifications were investigated using the

three-foot square panel. Since the secondary pressure waves originate

at the edges, it would seem that treating the vertical edges of the

panel with sound absorbing material would eliminate the effect of

diffraction. When a three-inch thickness of Owens Corning 705

Fiberglas was placed along each vertical edge of the panel, the

results of Figure 29 indicate that this treatment has no appreciable
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TABLE 7

Pressure Maxima and Minima at 1 KHz, 3-Foot Square Surface

a CALC MEAS

1 .376 22.1 22

2 .752 48.6 49

TABLE 8

Pressure Maxima and Minima at 2 KHz, 3-Foot Square Surface

h e E
h Q CALC MEAS

1 .188 10.8 10

2 .376 22.1 22

3 .564 34.3 35

4 .752 48.6 50

5 .940 70 67
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effect on the hard wall pressure. This is because the discontinuity

at the edge of the rigid panel is still present despite the fact that

the material is highly absorbing. To remove this discontinuity, the

edge must be completely covered by the material. With the edge of the

panel covered, the incident wave is attenuated as it travels through

the material to be diffracted at the edge. Furthermore, the diffracted

wave is also attenuated as it travels outward through the material

and toward the microphone at the center of the panel. The resulting

pressure is shown in Figure 30. Modifications to the edges, such as

rounding the corners, would have no effect on edge diffraction for

the frequencies we are interested in. This would only become effective

when the wavelength is the same size or smaller than the diameter of

the rounded corner. The importance of surface geometry was investi-

gated by measuring the pressure as a function of incident angle at

the center of a perfectly reflecting three-foot diameter circular

board. The results, shown in Figure 31, indicate that the geometry

of the circular panel strongly reinforces the diffraction effects.

In fact, this result would be expected since each secondary source

at the circumference of the panel is the same distance from the

microphone at the center. Since the pressure fluctuations are more

pronounced for this geometry, a square or rectangular panel would be

preferred for the reflecting boundary.

As seen by the curves in Figure 27, the magnitude of the fluctua-

tion in pressure as a function of incident angle decreases as the

frequency is increased. At high frequencies where the dimensions of

the panel are large compared to the wavelength, the effect of

diffraction is less pronounced, and the panel is a better approximation
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to an infinite boundary. Therefore, the largest surface possible

should be chosen for measurements with the surface pressure method in

order that the assumption of an infinite boundary be valid at the

lowest frequency of interest. Furthermore, the diffracted wave from

the edge will be attenuated by the additional distance it must travel

to the microphone at the center of a larger panel. It can be seen

then that the use of a larger surface would reduce diffraction effects

and also result in a lower limit for measurements. For these reasons,

a six-foot square panel was used instead of the three-foot panel for

all future measurements with the surface pressure method. The hard

wall pressure measured as a function of incident angle is shown in

Figure 32 for several frequencies with the larger surface. Despite

the fact that the edges have not been treated, the improved performance

for the larger surface, especially at high frequencies, can be seen.

The pressure measured at the surface of an absorbing material as

a function of incident angle shows little evidence of the diffraction

effects that were obtained with hard wall pressure measurements. This

is because the material covering the surface of the rigid panel helps

to eliminate the discontinuity at the edges and will attenuate. a

diffracted wave as it travels across its surface to the microphone.

A further limitation and source of error for measurements with

the surface pressure method are the temperature variations during

testing. Although this variation has a minimal effect on the pressure

levels, it has a direct relationship on the measurement of the phase

angle. A change in temperature will affect the speed of sound and

thus the wavelength. The speed of sound as a function of temperature

is
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c 4.03 159.6 + OF) (5.3)

where

C = speed of sound in ft/sec

oF = temperature in degrees Fahrenheit

Since the wavelength \ is related to the speed of sound,

\x (5.4)

it is also affected by a temperature change and will influence the

measurement of the phase angle. If the same phase measurement is

made at different temperatures, a phase shift between the two will

be noted as shown in Figure 33. Although there is only a very small

variation in one wavelength for the temperature change, this variation

is accumulated over a distance of several wavelengths. Therefore,

over a distance of one wavelength, there is less error in the phase

measurement than over a distance of two wavelengths. At high fre-

quencies, where there are several wavelengths between the loudspeaker

and microphone, the probability of error in measuring the phase angle

becomes very high. The following expression corrects the phase error

between similar measurements made at different temperatures T, and

1 -.

cW ' (5.4)

where

X = the distance between source and microphone

C,= speed of sound at temperature T,

C,= speed of sound at temperature Tz
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To control temperature variation in the anechoic chamber, the

thermostat of the temperature control system for the room was set at

a constant level during all measurements. Although the temperature

was constant to within + 0.50F during each testing period, the actual

temperature levels between different tests could vary as much as 0.50F

to 1 F. The phase correction for measurements taken over a distance

of 8'4" between the source and microphone and for temperature varia-

tions of 0.50 and 1.0°F is listed in Table 9 for several frequencies.

In the same manner, a temperature gradient between the source and

microphone would further interfere with an accurate measurement of

phase angle. Therefore, the phase measurement is especially sensitive

to temperature changes.

As mentioned previously, measurements with the surface pressure

method can be made using a free field pressure instead of the hard

wall pressure as the reference measurement. However, there is some

difference between the data obtained using each of these measurements.

Since the same surface pressure was used for each measurement, the

error must be due to the reference measurements at the perfectly

reflecting boundary and for free field conditions. Assuming a

pressure doubling effect for the incident pressure at the perfectly

reflecting surface, the difference between the hard wall pressure and

the free field pressure at the same point in space should be six

decibels. For a perfectly reflecting surface with an infinite

impedance, the phase component of the hard wall pressure should be

the same as the phase components of the free field pressure. There-

fore, the difference between the phase components should be zero.

The pressure ratio and phase difference between these measurements
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TABLE 9

Error in Phase Measurements Due to Temperature Variations

Wavelength (cm) Delta Phi (Degrees)

Freg , = 76.0 T= 76.5 T3 = 77.0 19 T ~T1, T 3

500 69.177 69.210 69.242 0.6 1.2

1000 34.589 34.605 34.621 1.2 2.5

2000 17.294 17.302 17.310 2.5 4.9

3000 11.530 11.535 11.540 3.7 7.4

4000 8.647 8.651 8.655 4.9 9.9

5000 6.918 6.921 6.924 6.2 12.3

6000 5.765 5.768 5.770 7.4 14.8

8000 4.324 4.326 4.328 9.9 19.7
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as a function of incident angle are shown in Figures 34 and 35. The

pressure ratios are on the order of six decibels and are relatively

unchanged for angle of incidence. Only at 1000 Hz, where the length

of a side of the six-foot square surface is approximately six times

the wavelength is the pressure ratio much less than six decibels.

This is because the assumption of an infinite surface is not valid at

this frequency. The phase differences, on the other hand, vary

considerably both with frequency and angle of incidence. Therefore,

the phase angle is responsible for the error between measurements

using a reference pressure at the reflecting surface and for free

field conditions. A 3% error in the phase angle will result in a

10 degree phase shift which will clearly alter the absorption proper-

ties of the material. However, the error limits for absorption

measurements cannot be quantitatively stated in terms of the error in

measuring the phase angle. This is because the absorption properties

are also dependent on the difference in pressure levels at the reflect-

ing surface and material surface for each measurement. Nonetheless,

it can be stated that the surface pressure method strongly depends on

an accurate measurement of the phase angle.

It is obvious that by using a finite sample and reflecting sur-

face, the assumption of an infinite boundary is not valid at low

frequencies where the wavelength is on the order of the dimensions of

the sample. Therefore, the low frequency limit for measurements with

this method must be determined. Measurements by Ingard and Bolt using

and eight-foot square panel indicate reasonable data for frequencies

as low as 500 and 700 Hz. Considering Equation 5.2 and comparing our

results relative to those of Ingard and Bolt, reasonable measurements
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with the six-foot panel used in this study should be obtained for

frequencies as low as 700 and 1000 Hz. However, experimental results

indicate that the low frequency limit for measurements occurs for a

much higher frequency. Measurements at normal incidence with the

surface pressure method were compared with measurements using a

standing wave tube to determine the actual limits of this method.

The absorption coefficient and impedance at normal incidence of a

one inch thick sample of Owens Corning 705 Fiberglas measured with

a standing wave tube are shown by the curves in Figures 36 and 37

respectively. The data points in these figures are the values at

normal incidence measured by the surface pressure method for a six-

foot square sample of the same material. The imaginary component of

the impedance does not have a negative value until 3000 Hz for these

measurements. At this frequency the length.of the side of the sample

is approximately 15 times the wavelength. It. becomes apparent that

for frequencies below this limit, the wavelength becomes comparable

to the dimensions of the sample and the surface does not behave as an

infinite boundary. Therefore, the ratio of the horizontal dimension

of the sample to the wavelength at the lower limiting frequency

should be at least 15 for the assumption of an infinite boundary to

be valid.

Using the surface pressure method and proceeding as outlined in

Chapter 4.3, the specific normal impedance of a one-inch thick sample

of Owens Corning 705 Fiberglas was measured as a function of incident

angle for several frequencies. The results are shown in Figures 36

to 41, where measurements are compared for both the hard wall pressure

and free field pressure used as a reference. The discrepancy between
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these measurements is due to the difficulty in measuring the phase

angle as stated previously. Both the real and imaginary components

of the impedance increase from the values at normal incidence as the

incident angle is increased from zero to 90 degrees. Similar results

at each frequency indicate that the glass fiber material behaves as

an extended reacting material.

The absorption coefficients measured as a function of incident

angle for the same sample are shown in Figures 42 to 45. In each of

these figures, data is again compared for measurements using both the

hard wall pressure and free field pressure as a reference. Despite

the difference in impedance values for these two measurements, the

variation between absorption coefficient data is small. This is

especially obvious at 3000 Hz, where the large discrepancy between

impedance measurements in Figure 39 makes itself evident in Figure 43

as only a small difference between the absorption coefficients. As

the incident angle increases from zero to 90 degrees, the absorption

coefficient increases from its normal incidence value to a maximum

value and then decreases as the incident angle approaches grazing

incidence. At an oblique angle of approximately 60 degrees, the

absorption coefficient has a maximum value and the material is almost

totally absorbent. The behavior of the absorption coefficient at

grazing incidence is confirmed from our investigation of the pressure

at the surface of the material as a function of incident angle. From

Equation 4.30, the absorption coefficient as a function of incident

angle is

OC P (cosT- i') (4.30)
cp, '7%
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Therefore, since ?, approaches zero as e approaches 90 degrees, o e

will approach zero at grazing incidence.

Similar results for the absorption coefficient and specific

normal impedance as a function of incident angle were obtained for

other samples of Owens Corning Fiberglass but were not included

since their behavior did not differ markedly from that for the

Owens Corning 705 Fiberglas.

5.4 Theoretical Results

The expressions for the specific normal impedance of a porous

material as derived by Beranek and Ford are quite similar as seen

by Equations 3.50 and 3.84 respectively. Obviously, the main differ-

ence arises from Beranek's assumption of isothermal conditions for

wave propagation within the material. Another difference between

these two expressions is that the porosity n does not appear as a

part of the argument of the hyperbolic cotangent function in Ford's

equation. This is because the continuity equation used by Beranek

and Ford respectively differ as shown below.

=nU (5.5)

St (5.6)

As would be expected, the phase velocities for propagation within the

material also differ and are given by the following expressions

C = (5.7)
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-, (5.8)

However, for the materials we will consider, the porosity has a value

of .96 to .99 so that the difference in propagation velocities should

have a minimal effect on the results. Since the glass fiber materials

of interest in this study resemble the mathematical model for a porous

sound absorbing material as used in both Beranek's and Ford's theories,

one should be able to use these theories to calculate their absorption

properties. The results for each of these theories will be presented

separately and compared with a standing wave tube measurement.

Using Beranek's theory, the sound absorbing properties of a one-

inch thick sample of Owens Corning 705 Fiberglas can be calculated

in terms of its physical properties - namely, the porosity and flow

resistance. These parameters which appear in Equation 3.50 are chosen

to correspond to the properties of the material with both the nominal

flow resistance of 78 cgs rayls/inch and the measured flow resistance

of 26.3 cgs rayls/inch used in the calculations. The agreement be-

tween measurement and theory for the impedance and absorption

coefficient at normal incidence for this sample is shown in Figures

46 and 47. As seen by the curves, the theory underpredicts the real

component of the impedance and also the absorption coefficient. Since

only two physical parameters, the porosity and flow resistance,

determine the acoustic behavior of the material, it would seem that

this discrepancy is due to the value of one or both of these proper-

ties. To determine the effect each of these parameters has on the

impedance, calculations were made for a range of values in both
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porosity and flow resistance that would be representative of the

manufacturing tolerances for these materials. The impedance calculated

from Beranek's theory for a material with limiting values of .94 and

.99 for porosity and a flow resistance of 26.3 cgs rayls/inch is

shown in Figure 48. Similarly, for the same range of porosity, the

impedance calculated for a flow resistance of 78 cgs rayls/inch is

shown in Figure 49. These results indicate that a variation in

porosity from .94 to .99 will have a negligible effect on the normal

impedance of this material below 5000 Hz. For a constant porosity

of .961, the impedance and absorption coefficient of this material

calculated for several flow resistance values are shown in Figures

50 and 51. The variation in flow resistance affects only the real

component of the impedance, and leaves the imaginary component

relatively unchanged for frequencies below 2000 Hz. Considering

the experimental results in Figure 21, a flow resistance of nearly

140 cgs rayls/inch would be necessary to calculate impedance values

corresponding to those measured with the standing wave tube apparatus

for a one-inch thick sample of Owens Corning 705 Fiberglas. Since the

range of flow resistance values for this material due to manufacturing

specifications is 60 to 99 cgs rayls/inch, the value of 140 cgs rayls/

inch is completely outside of this range. Therefore, the flow

resistance as used in this theory does not account for the total

dissipation within the material and other dissipation mechanisms

must be present. Beranek has remedied this problem by introducing

a "dynamic" flow resistance to compensate for this factor. This

parameter is determined from standing wave tube measurements by

fitting curves for the impedance calculated at different flow
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resistance values to the experimental results. The dynamic flow re-

sistance is different from the measured static flow resistance and is

partially explained by Beranek as being due to the nonisotropic nature

of the materials. However, this new parameter does not really solve

the problem since it bears no direct relationship to the static flow

resistance and can only be determined from impedance measurements.

In Table 10, the variations between these values as presented by

Beranek are listed, with "dynamic" values being both above and below

the measured static values for different materials. In short, the

use of this new parameter does not seem to logically account for the

dissipation within the materials.

Ford's theory for sound absorption by a porous material is also

dependent on the flow resistance and porosity of the material, but

introduces a new parameter ' to account for wave propagation within

the material under isothermal or adiabatic conditions or any condition

between these two extremes. To determine what effect this parameter

has on the acoustic properties of the material, the value of " will

be chosen as 1.0 and 1.4 for isothermal and adiabatic conditions

respectively and as 1.2 as an average between these two extremes.

The values of porosity and flow resistance corresponding to the

properties of a one-inch thick sample of Owens Corning 705 Fiberglas

were used to calculate the impedance and absorption coefficient at

normal incidence from Ford's theory. Using the measured flow resist-

ance of 26.3 cgs rayls/inch, the calculated results for the sample

are shown by the curves in Figures 52 and 53. The calculated results

for the same sample using the nominal flow resistance of 78 cgs rayls/

inch are shown in Figures 54 and 55. As seen by these curves, the
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TABLE 10

Beranek's Flow Resistance Data

Flow Resistance (3s/f rc)

Static Dynamic

17.6 10.0

1.7 4.5

5.4 6.0

13.9 10.0

4.5 6.0
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value of "( affects only the imaginary component of the impedance and

leaves the real component unchanged for frequencies below 4000 Hz.

However, comparing these results with Figures 21 and 22, the values

calculated from Ford's theory also underpredict the real component

of the impedance and also the absorption coefficient. A change in

the flow resistance would affect the absorption characteristics in

the same manner as shown in Figures 50 and 51. This is obvious

since both Equation 3.50 of Beranek's theory and Equation 3.84 of

Ford's theory have the same dependence on the flow resistance. Thus,

a flow resistance of 140 cgs rayls/inch would be required for the

real componenent of the impedance to coincide with standing wave

measurements for this material, and as noted previously, this value

would not be consistent with the manufacturer's quoted properties of

the material. For the value of -( chosen as 1.0, i.e., isothermal

conditions, the values calculated from Ford's theory are in close

agreement with results from Beranek's theory. This would be expected

since Beranek's theory limits wave propagation within the porous

material to isothermal conditions only.

The investigation of these theories for normal incidence acoustic

absorption has revealed several important results in terms of the

properties of a glass fiber material. These results will be stated

in terms of their effect on the real and imaginary components of

the impedance since the absorption coefficient is dependent on both

of these parameters. The value of flow resistance will affect only

the real component of the impedance, leaving the imaginary component

unchanged. For conditions of wave propagation within the material,

the value of Y will alter only the imaginary component of the
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impedance. Furthermore, the use of a flow resistance also does not

account for the total dissipation in glass fiber materials and further

dissipation due to viscous or thermal effects may be prominent for

these materials. Due to the discrepancy between measurement and

theory for normal incidence acoustic absorption, the extension of

these theories to oblique incidence behavior was not included. This

subject will be covered by Pyett's theory.

The oblique incidence acoustic behavior of a material can be

calculated from Pyett's theory in terms of two propagation parameters.

These parameters are determined from normal impedance measurements

with a standing wave tube for samples of different thicknesses.

Figures 56 and 58 show the attenuation constant and phase donstant

for samples of Owens Corning 703, 704, and 705 Fiberglas, as compared

to the phase constant k for wave propagation in air. The impedance

and absorption coefficient calculated at oblique incidence for a one-

inch thick sample of Owens Corning 705 Fiberglas are shown in Figures

38 to 45 together with experimental results. The calculated impedance

increases from its value at normal incidence as the incident angle

increases from zero to 90 degrees. Hence, the glass fiber material

behaves as an extended reacting material. The absorption coefficient

has a maximum value at an oblique angle of incidence of approximately

60 degrees. This agrees favorably with experimental results for this

material. Although the agreement between measurement and theory is

fairly good, there are two disadvantages with this approach. First,

several normal impedance measurements must be made in order to

determine the bulk acoustic parameters for the material; and second,

due to the non-homogeneous nature of the material, it is possible



1.0

.8 E

0 .6

a

.4

..2. . . ...

*0

.5 1 2 3 4

Frequency (KHz)

Figure 56 Attenuation Constant and Phase Constant for O.C. 703 Fiberglas

0



1.0

.8 r

.6

P4

U .4

z .2

0.0 I p I I

.5 1 2 3 4

Frequency (KHz)

Figure 57 Attenuation Constant and Phase Constant for O.C. 704 Fiberglas

O
0



1.0 E

.8 E

.6

0
.5 1 2 3 4

Frequency (KHz)

Figure 58 Attenuation Constant and Phase Constant for 0.C. 705 Fiberglas

rl H
aH



112

that the bulk acoustic parameters measured for a single sample may not

be representative of the acoustic parameters for the entire material.
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

In summary, measurements of the absorption characteristics of a

material at oblique incidence by the surface pressure methods are valid

within a certain frequency range. The low frequency limit is deter-

mined by the size of the sample which must be large enough, relative

to the wavelength, so that the surface behaves as an infinite boundary.

The upper frequency limit is determined by the accuracy in measuring

the phase angle upon which this method depends strongly. However, due

to the limitations of temperature variation and diffraction, the

accurate measurement of the phase angle makes this method very diffi-

cult to perform.

The following recommendations can be made for future measurements

using the surface pressure method.

1. The sample should be as large as possible to insure that the

surface behaves as an infinite boundary. The ratio of the length of

the horizontal dimension of the sample to the wavelength at the lowest

frequency of interest should be at least 15.

2. The sample should be either square or rectangular in shape so

that the geometry of the finite surface does not reinforce the effect

of diffraction.

3. The vertical edges of the perfectly reflecting surface should

be covered with a sound absorbing material to reduce or eliminate

diffraction from the edges.

4. Measurements at very oblique angles are not valid because of

the rapid drop in surface pressure for incident angles greater than

80 degrees.
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5. Adequate temperature stabilization between measurements must

be assured and temperature gradients prevented so that no additional

phase shift is introduced in the measurement of phase angle.

6. A theoretical analysis of the diffraction due to a finite

sample would provide useful information on the limitations inherent

with this method.

Additional oblique incidence measurements using techniques presented

in Section 1.2 should be performed with the same samples to judge

the validity of oblique incidence data obtained using the surface

pressure method. The interference pattern method presented by Sides

and Mulholland (4) would be preferred for future tests since it

eliminates the problem of measuring the phase angle.

There was reasonably good agreement between oblique incidence

absorption measurements with the surface pressure method and values

calculated from Pyett's theory for the glass fiber materials. This

indicates the oblique incidence acoustic behavior of a material can

be calculated from experimentally determined bulk acoustic parameters.

However, as stated previously, there are two disadvantages with this

method. First, the bulk acoustic parameters for a material can be

determined only from several normal impedance measurements with samples

of different thickness; and second, if a material is in any way in-

homogeneous, the bulk acoustic parameters measured for one sample may

not be accurate representation of the parameters for the entire

material.

It would be most advantageous to eliminate experimental measure-

ments for an acoustic material and thus be able to predict its behavior

for normal and oblique incidence from a knowledge of its physical
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properties. The theories of Beranek and Ford have attempted to

provide this type of analytical approach based on the parameters of

porosity and flow resistance. However, considering the results for

glass fiber materials, the agreement between measurement and theory

is poor. Beranek has assumed that the compressions and rarefactions

within the material occur for isothermal conditions rather than for

adiabatic conditions which prevail for wave propagation in free air.

This, he states, is true for many materials, especially below 2000 Hz.

To modify this assumption, Ford has included a parameter T in his

theory which may have a value of 1.0 for isothermal conditions or 1.4

for adiabatic conditions or any value between these extremes. However,

even for the variation in this parameter, the results calculated from

theory do not predict the increased attenuation measured experimentally

for these materials. Therefore, the effect of the porosity and flow

resistance terms must be investigated. For glass fiber materials, the

range in value for porosity has little effect on the calculated results

as was previously shown. The total sound attenuation within these

materials is accounted for by the flow resistance, which is assumed

to be constant within the range of, sound pressure levels generally

encountered. The dependence of the impedance on flow resistance was

presented in Section 5.4. In order that the impedance calculated for

the glass fiber materials be in reasonable agreement with experimental

values, the value of flow resistance must be greater than the upper

limit of the range of values specified for manufacturing tolerances

within the material. This would indicate other dissipation mechanisms

involved within the material that are not included in the flow resist-

ance term. Due to the internal structure of glass fiber materials,
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the attenuation due to viscous and thermal effects for individual

fibers may have a pronounced effect on sound absorption. While the

frame of the material is assumed to remain rigid in these theories,

movement of individual fibers may also create increased attenuation.

In short, viscous and thermal interactions within the material on the

level of the microstructure have been neglected by these theories and

the total dissipation is accounted for only by the flow resistance,

a macroscopic property. Therefore, an investigation of the dependence

of sound absorption on the internal microstructure of these materials

would prove quite helpful in predicting their acoustic behavior.

Attenborough (25, 26) has modeled a fibrous absorbent as a collection

of cylindrical scatters and has developed a scattering theory approach

to determine the absorption characteristics in terms of fiber diameter

and fiber spacing. A scattering cross section, which includes viscous

and thermal effects, for a cylindrical obstacle is used in conjunction

with a single scattering theory to determine the sound absorption of

the glass fiber material. Further modifications include a multiple

scattering treatment to account for the interactions among scattered

waves. In this case, then, the dissipation mechanisms are due to:

1. Mode conversion to damped viscous and thermal waves in air

at the fiber boundaries.

2. The energy loss due to formation of the internal incoherent

field due to multiple scattering.

A logical continuation of this work should develop Attenborough's

scattering theory to include shear and thermal wave interactions.

Further consideration should include possible structure modifications

of the model to give a more accurate representation of the actual



117

material. In addition, the inhomogeneous nature of these materials

indicates that a statistical approach might also be used to treat

variations within the microstructure for different samples of the

same material. Beran (27) introduces flow through a porous media

using Darcy's Law and statistics to determine the permeability of the

medium. Such an analysis based on the microstructure would thus pro-

vide insight into the actual dissipation mechanisms involved within

a material, and as an ultimate goal, would dictate which parameters

are to be controlled in production in order to optimize results.

These topics will be the subject of future research and study.
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APPENDIX - A

NEWTON-RAPHSON ITERATION METHOD

The solution to an equation may be found using an iteration

technique such as the Newton-Raphson method. According to this

method, if Xi is an approximation to a root of the function,

F = o (A.1)

then a better approximation is given by i,,+ where

-X __(A.2)

(x;) denotes the derivative of Ex) with respect to x evaluated

at xi . The root of Equation A.1 can be obtained to the desired

accuracy by iterating successive approximations. The use of an

electronic computer renders this method very simple to perform.

In our case we are interested in solving the equation

cosh 7 S, d) U+IV (A.3)

for values of 2 where U and V are known. Since S. is complex,

this involves finding solutions for the complex argument of a hyper-

bolic cosine function. If we introduce the complex numbers A and B

such that

(A. 4)
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2B A 2d(9 4 ) (A.5)

B b,4 z (A.6)

Equation A.3 may be rewritten as a function of TB

F (8) = cosB - A = O (A.7)

The derivative of F(B) with respect to B is

F'(B} = sih B (A.8)

Therefore, if 'Bi is an approximation to the root of Equation A.7,

then a better approximation is given by

Bi+ - Cs11 A (A.9)

The root of E (~\ is obtained by taking successive approximations with

the iteration formula of Equation A.9. It must be noted that there

are two solutions to Equation A.7 since the hyperbolic cosine is an

even function.

(A.10)

(A.11)

Furthermore, the hyperbolic cosine of a complex argument is invariant

for multiples of 2V added to or subtracted from the imaginary
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component. Therefore,

B.- 6, 6, 21 rn (A.13)

are the set of all solutions. However, considering the physical as-

pects of the problem, we are interested only in roots with a positive

real component. This corresponds to the attenuation constant of the

appropriate wave propagation parameters.
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APPENDIX - B

INTERFERENCE PATTERN CALCULATION

To predict the location of the pressure maxima and minima, an

incident plane wave is assumed diffracted at the edges of a finite-

sized panel. Three pressures - P, and p , the pressures diffracted

from the edges, and K, the pressure from the incident wave - will

be measured by the microphone located at the center of the panel. The

important consideration is the phase relationships between these pres-

sures as determined by the angle of incidence. Referring to Figure 59,

the phase component of each pressure will be taken relative to the line

X X Therefore,

lo-t + o sine )

(B.2)

e= ce (B.3)

The pressure at 0 is the sum of these three pressures. Omitting the

time factor e wt, we have

o esine ( Ae Ce (B4)sn)
+ C e (B.4)
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Furthermore, we will assume that the amplitude of the pressure at each

edge is the same so that B- C . Multiplying g by its complex conju-

gate, we obtain

z Z2(oQs ie) 4 i+ o (c - cos(\ (B.5)

The pressure fluctuations will have maximum and minimum values where

the derivative with respect to e is zero.

ibYa' C0,55 S-m a S +snq)e+ (B.6)

For the derivative to be zero for some angle 9 , the following condi-

tions are found:

. COS = 0 (B.7)

Ssin , 'sin ~) = O (B.8)

Si g \J no ,,.
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Figure 59 Geometry for Surface Pressure Method Tests




